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Abstract. The Bertlmann–Martin (BM) inequality for the rms radius is checked against the
exact value in the case of a particle in a weak central potential having a single bound state. A
number of usual potentials are considered in one and three dimensions. The BM inequality is
poorly saturated but the correction factorϕ needed to recover the exact rms radius is weakly
depending on the shape of the potential, except for the Hulthén potential. For potentials having
a hard-core component, we found thatϕ, which depends on the bound-state energy, tends to a
universal curve as the hard core radius increases.

1. Introduction

More than two decades ago, Bertlmann and Martin (BM) derived a number of inequalities
from the Thomas–Reiche–Kuhn dipole sum rule and similar expressions [1, 2]. One of them
relates the rms radius of the ground-state wavefunctionψ0(r), defined as

〈r2〉0 =
(∫

r2|ψ0(r)|2 dnr

)/(∫
|ψ0(r)|2 dnr

)
to the lowest dipole energy difference

〈r2〉0 6 nh̄2

2m(E1− E0)
(1)

wheren is the dimension of the space,m is the mass of the particle,E0 andE1 are the
ground state (1s) and lowest dipole state (1p) energies, respectively. This inequality is valid
in the case of a particle moving in a central potential. It has been discussed in details for3-
hypernuclei [3, 4], a rather unique case in the strong interaction sector. The BM inequality,
which turns to an equality for the harmonic oscillator potential, is saturated within a few
per cent for a large class of potentials, as long as the particle is well confined [3, 4].

For a loosely bound state the situation is different. A one-dimensional example, the
modified P̈oschl–Teller potential [3], has shown that (1) is far from being saturated in such a
case. On the other hand, the wavefunction of a weakly bound particle is not very sensitive
to the shape of the potential. Consequently it suggests the possibility of establishing a
dimensional relationship:

〈r2〉0 = nh̄2

2m(E1− E0)
ϕ. (2)

The correction factorϕ will vary with the energy difference; it is not expected, however, to
be strongly dependent on the shape of the potential. If this dependence ranges over a few
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per cent only, equation (2) could yield an approximate value of the rms radius. Furthermore,
if the variation ofϕ exhibits a monotonic hierarchy among the potentials, its lowest value
will provide us with a lower limit.

The purpose of this work is to check the validity of these intuitive arguments on a couple
of typical examples. We shall concentrate our study on potentials admitting a single (1s)
bound state. Accordingly, the lowest energy difference has to be replaced by−E0. Actually
the appropriate variable isε = E0/E0max, whereE0max is the lowest possible eigenvalue
such that the considered potential admits a single bound state. The aim is to investigate the
variation ofϕ(ε) in the dimensional relationship

〈r2〉0 = nh̄2

2m(−E0)
ϕ(ε)

for the set of potentials currently used.
Part of our motivations is found in the existence of the so-called halo nuclei, in which

the binding energy of the last neutron is much smaller than the average binding energy per
particle. Because of this peculiar situation, a two-body approximation is justified [5], and
(2) could serve as a determination of the rms radius of the halo wavefunction, at least to fix
a lower and an upper bound. In this case, however, it is important to take into account the
Pauli principle between the loosely bound neutron and the core particles. Within a two-body
framework, this can be achieved approximately by adding a hard core component to the
binding potential. As we shall see, the presence of a hard core has a strong influence onϕ,
and brings a kind of universal behaviour. As shown in the appendix, this is given by

ϕ ≈ 1
6(1+ 2

√
ε + 2ε).

This situation is of particular interest since hard-core potentials are often found between
molecular states. Thus, the present finding could be applied to weakly bound molecules
such as He2. Note that for applications to two-body systems, the massm has to be replaced
by the reduced massµ.

This paper is organized as follows. Section 2 is devoted to one-dimensional cases
for which analytical solutions exist. More realistic three-dimensional cases are studied in
section 3. Conclusions are drawn in 4.

2. The one-dimensional case

We commence this section by considering the modified Pöschl–Teller potential:

V (x) = − h̄
2

2m
α2λ(λ− 1)

cosh2 αx
. (3)

Although this potential depends on two parameters, we shall see in the final results that (2)
is not affected byα, which plays the role of a scaling factor. More generally, we remark
that the BM inequality is invariant under the scaling transformation:

V (x)→ γ 2V (µx).

The corresponding Schrödinger equation is given by

d

dx
ψ(x)+

[
−k2+ α2λ(λ− 1)

cosh2 αx

]
ψ(x) = 0. (4)

Here,m denotes the mass of the particle andk2 = −2mE/h̄2. The complete solution can
be found in [6]. Let us simply recall the ground-state (lowest even) wavefunction:

ψ0(x) = N0[coshαx]1−λ (5)
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whereN0 is the normalization factor. In the one-dimensional case, the lowest 1p state is
replaced by the lowest odd parity state. Since this is at zero energy forλ = 2, whenλ
ranges over the interval [1, 2] the potential has a single bound state; its (ground-state) energy
and rms radius are respectively given by

E0 = − h̄
2

2m
α2(λ− 1)2 (6)

〈x2〉0 = 1

α2

(∫ ∞
0

u2 du

[coshu]2λ−2

)/(∫ ∞
0

du

[coshu]2λ−2

)
. (7)

The rms radius can be expressed by using the generalized zeta function [7]:

〈x2〉0 = 1

2α2
ζ(2, λ− 1). (8)

Accordingly, the BM inequality reads

1

2
ζ(2, λ− 1) 6 1

(λ− 1)2
. (9)

To turn it into an equality, the necessary correction factorϕ is obviously

ϕ = 1
2(λ− 1)2ζ(2, λ− 1). (10)

In order to display the variation ofϕ with energy over the domain of interest, namely
λ ∈ [1, 2], it is convenient to introduce the relative variable

ε = E0/E0max= (λ− 1)2 (11)

with E0max= E0(λ = 2). It gives immediately

ϕ(ε) = ε

2
ζ(2,
√
ε). (12)

Recalling that

ζ(2, z) =
∞∑
n=0

1

(n+ z)2 (13)

it is easily checked that at zero energy, the limiting value isϕ(0) = 1
2.

The second example is the finite square-well potential:

V (x) = −V0 |x| 6 a
= 0 |x| > a.

(14)

The solution is found in any textbook, so we just write the final results. Introducing

u0 =
√
V0a andu2 = u2

0 − 2mE0

h̄2 , the eigenvaluesE0 are solutions ofu tanu =
√
u2

0− u2.
Since we restrict the spectrum to a single bound state, the maximum of the potential strength
is fixed by setting the lowest odd state solution to zero energy, as in the previous example.
Here the maximum acceptable value ofu0 is π/2, and we have

ε = E0/E0max= 0.627(u tanu)2. (15)

The BM inequality reads

1

6

[
2(u tanu+ 1)2− 3 tan2 u+ 1

1+ u tanu

]
6 1. (16)

Consequently the correction factorϕ(ε) is given by the left-hand side of this inequality. It
is easy to verify thatϕ(0) = 1

2 as before. In fact, as we shall see in the next section, the
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Figure 1. Separation energy dependenceε = E0/E0max, equation (11), of the corrective factorϕ
to the one-dimensional BM inequality for: the Pöschl–Teller potential (——) and the square-well
potential (- - - -).

value ofϕ(0) is independent of the potential. It allows us to derive a lower bound to the
rms radius.

In figure 1, we display the variation ofϕ with ε for the two studied potentials. The
two curves have a rather similar shape, the largest deviation being found atε = 1, at the
threshold of the lowest odd state. It amounts to less than 8%, which is reasonably small in
view of the sharp difference in the shape of the two potentials.

3. The three-dimensional case

Assuming spherical symmetry, the following set of potentials has been chosen.
(1) The shell-delta potential:

V (r) = −V0cδ(r − c).
(2) The square-well potential:

V (r) = −V02(c − r).
(3) The Hulth́en potential:

V (r) = −V0
e−r/a

1− e−r/a
.

(4) The Wood–Saxon potential:

V (r) = −V0
1

1+ e(r−c)/a
.
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Although not exhaustive, this choice allows us to study the behaviour of the correction
factor ϕ over a large domain of potential shapes and curvatures. Note that the lengths are
expressed in units which scale with ¯h, m and−E0.

As in the one-dimensional case, the parameter space is restricted to the one allowing a
single bound state (` = 0). The limits are obtained by setting the lowest` = 1 state at zero
energy, which is achieved by a method developed in [8] for the Hulthén and Wood-Saxon
potentials.

As the solutions of the corresponding Schrödinger equations are well known, we shall
simply quote the final expressions forϕ and ε = E0/E0max, when analytical results exist.
For the Wood–Saxon potential, the results are displayed on curves.

In the introduction it was remarked that it could be desirable in some cases to add a
hard core component to the binding potential. It simulates the antisymmetrization between
the loosely bound particle and the core particles generating the binding potential. Although
not perfect, this method yields a hint towards the influence of the Pauli correlations.

In practice, we have considered the four cases defined above, introducing a hard-core
component and shifting each potential byrc. The presence of the hard core does not change
the properties of the 1s state (translational invariance) but it has an influence on the energy
of the 1p level. Except for the Hulthén potential, the results will be given as a function of
χ = (c + rc)/c. The caseχ = 1 corresponds torc =0. They are given below.

The shell-delta potential:

ϕ(u) = 1

6
(1+ 2u2χ2)+ 2

9

u3(3χ − 1)

e2u − 1− 2u
(17)

ε = u2/u2
0 (18)

with

u0(1+ cothu0) = 3χ2

3χ2− 3χ + 1
.

The square-well potential:

ϕ = 1

18

[
3

2
((2χ − 1)u cotu− 1)2+ 1

2
(1− u cotu)2− 3 cot2 u− 1

u cotu− 1

]
(19)

and

ε = u2 cot2 u

u2
0 cot2 u0

(20)

with

u0 cotu0 = −
√
y2

0 − u2
0

tany0+ y0(χ − 1) = 0 y0, u0 ∈
[π

2
, π
]
.

(21)

The Hulth́en potential (as a function ofre):

ϕ = 1

6

[
1+ 9u+ 33u2+ 48u3+ 24u4

(u+ 1)2(2u+ 1)2
+ (2ure)(1+ 6u+ 6u2)

(u+ 1)(2u+ 1)
+ 2r2

e u
2

]
(22)

whereu2 = −2mE/h̄2 andx = u2/u2
0.

Hereu0 has to be calculated numerically from the critical value of theV0 bringing the
1p level to zero energy.

The Wood–Saxon potential requires numerical solutions. Note that because of scaling
properties,ε is actually independent of thec or a parameter. We have chosen to fixc. On
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Figure 2. Separation energy dependenceε = E0/E0max of the corrective factorϕ to the three-
dimensional BM inequality for: the Hulth́en potential (——), shell-delta potential (· · · · · ·),
square-well potential (- - - -) and the Wood–Saxon potential,c = 2.5, a = 0.5, (— · —).

the other hand, by varyinga between 0.4 and 0.8, the correspondingϕ’s describe practically
indistinguishable curves. Consequently all the plotted results are taken froma = 0.5.

For ordinary potentials, with no hard-core component, the results are displayed in
figure 2. Except for the Hulth́en potential, the spreading of the correction factorϕ
is relatively small. Nevertheless, the Hulthén potential results clearly indicate that the
assumption of a weak variation ofϕ against the shape of the potential can be wrong.
Arguing for the lack of sensitivity of the weakly bound 1s wavefunction to details of the
potetntial can be misleading.

It is particularly interesting to remark that the asymptotic value ofϕ, reached forε→ 0
is the same for all potentials. It corresponds either to the 1s state energy approaching 0 or
to cases pushing the lowest virtual 1p state at infinity. The limit is easily obtained from the
asymptotic properties of the 1s wave function, and it yields an absolute lower bound

〈r2〉0 > h̄2

4m

1

(−E0)
(23)

wherem is to be replaced by the reduced massµ for applications to concrete examples.
Indeed this lower bound corresponds to the asymptotic behaviour found for the 1s state by
Fedorovet al [9].

Results obtained with a hard-core component are displayed in figures 3–6, for the shell-
delta, square-well, Wood–Saxon and Hulthén potentials, respectively.

Generally speaking, the hard-core component reducesϕ but keep unchanged the lowest
limit, which can be understood simply by the translational invariance of the properties of
the 1s wavefunction as its energy tends to zero. Except for the Hulthén potential, asrc
increases,ϕ undergoes a monotonic change up to a limit corresponding to a asymptotic



Bertlmann–Martin inequality for a weakly bound particle 1627

Figure 3. Hard-core dependence of the corrective factorϕ as a function ofε for the shell-delta
potential:χ = 1 (- - - -), χ = 1.1 (· · · · · ·), χ = 2 (— · —) andχ = 5(+∞) (——).

Figure 4. Same as in figure 3 but for the square-well potential:χ = 1 (- - - -), χ = 1.1
(· · · · · ·), χ = 2 (— · —) andχ = 5(+∞) (——).
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Figure 5. Same as in figure 3 but for the Wood–Saxon potential (c = 2.5, a = 0.5): rc = 0
(— · —), rc = 1 (- - - -) andrc infinite (——).

Figure 6. Same as in figure 3 but for the Hulthén potential:rc = 0 (- - - -), rc = 0.01 (— - —),
rc = 1 (· · · · · ·), rc = 5 (— · —) andrc infinite (——).
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value of rc. The case for Hulth́en (figure 6) is peculiar in the sense of a non-monotonic
behaviour withrc, and a shape ofϕ which starts to resemble the other cases asrc increases.

As expected, the shell-delta results are not so affected by the hard core, unless the
energy of the 1p state becomes close to the threshold of the bound state. Even atε = 1, the
spreading is much less than in the case of the square well or the Wood–Saxon potentials.
Finally, the striking observation concerns the variation with the hard-core radius. We find
that asrc is increasing,ϕ reaches rapidly an asymptotic curve independent of the potential.
Thus, beyondrc = 2, ϕ approaches a universal behaviour. In the appendix we show that
the limit is given by

ϕ ≈ 1
6(1+ 2

√
ε + 2ε). (24)

4. Conclusions

This paper is devoted to the BM inequality in the case of a weakly bound particle moving
in a local potential. The inequality relates the rms radius of the ground-state orbital to the
lowest dipole energy difference. If the potential admits a single (1s) bound state, we replace
the lowest dipole energy difference by the ground-state eigenvalue−E0.

From our investigation, based on few typical potentials in one and three dimensions,
we found that the BM inequality is never saturated for a weakly bound particle. In other
words it is never close to an equality, in contrast to the case of confining potentials [3, 4].
On the other hand, we have calculated the correction factorϕ needed to transform the BM
inequality into a dimensional relationship. This correction factor varies with−E0 but it
takes a universal value at zero energy. Since this asymptotic value is the lowest one, it is
used to establish a lower bound to the rms radius, thus complementary to the BM inequality.

In the one dimension case,ϕ is found to depend only slightly on the potential. It is
not the case in three dimensions, although the correction factors for the square-well and
Wood–Saxon potentials are relatively similar. In this respect the Hulthén potential produces
a very different shape ofϕ as function of the ground-state eigenvalue.

However, in the presence of a hard-core component, as the hard-core radius increases,
the variousϕ tend to behave in a uniform way. We showed that indeed asrc → ∞ the
resultingϕ is independent of the attractive part of the potential. In practice this behaviour
is manifest already at relatively moderate values ofrc.

Appendix

In this appendix, we show the existence of a limiting curveϕ(ε) for potentials having a
hard-core component when the hard-core radiusrc →∞. These potentials are defined by

W(r) = +∞ r 6 rc
= V (r − rc) r > rc.

(25)

V (r) are restricted to finite range regular potentials, i.e. such that
∫ R
b
|V (r)| dr, ∫ R0 r|V (r)| dr

exist for any positive value ofb,R denoting the range of the potential.
Sinceε, more correctlyE0max, is related to the potential strength for which the 1p level

is at zero energy, we first discuss the ‘critical’ strengthλ1 such that the potentialλ1W has
a zero energy p-wave bound state. Because of the hard core, it is convenient to translate
the radial coordinate byrc. In this case, the criticalλ1 is found by solving

d2

dr2
ψ1(rc, r)−

(
2m

h̄2 λ1V (r)+ 2

(r + rc)2
)
ψ1(rc, r) = 0 (26)
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imposing the solution to vanish atr = 0 and to behave like(r + rc)−1 at infinity.
As rc becomes increasingly large, the centrifugal contribution vanishes. In this limit,

λ1 tends toλ0, which corresponds to

d2

dr2
ψ0(r)− 2m

h̄2 λ0V (r)ψ0(r) = 0 (27)

having a zero-energy bound-state solution with the characteristics of an s-wave. The
techniques required to establish the critical valuesλ1 and λ0 were reported in [8], and
will not be repeated here.

By using translational invariance,E0max, the 1s eigenvalue of the original Schrödinger
equation, is obtained from

d2

dr2
ψs(r)− 2m

h̄2 λ1V (r)ψs(r) = −2m

h̄2 E0maxψs(r) (28)

with ψs(0) = 0 andψs(∞) = constant.
In [10], we have shown that, asλ1→ λ0, E0max→ 0 according to

−E0max= β(λ1− λ0)
2 (29)

where

β = 2m

h̄2

(∫ R
0 ψ2

0(r)V (r) dr

ψ2
0(R)

)2

. (30)

To evaluateλ1 − λ0, we multiply (26) and (27) byψ0 andψ1, respectively, and take the
difference. We get

2m

h̄2 (λ1− λ0)

∫ R

0
V (r)ψ1(rc, r)ψ0(r) dr = −2

∫ ∞
0

ψ1(rc, r)ψ0(r)

(r + rc)2 dr. (31)

The functionψ1 → ψ0 uniformly on [0, R] [11], whereasψ0 ' ψ0(R) and ψ1 '
ψ0(R)(R + rc)/(r + rc) for r > R. Consequently we are left with

2m

h̄2 (λ1− λ0)

∫ R

0
V (r)ψ0(r)

2 dr ' −2
∫ R

0

ψ0(r)
2

(r + rc)2 dr + ψ0(R)
2

R + rc . (32)

Taking into account thatψ0 is bounded, the integral in the right hand side of equation (32),
dominated by a constant times(1/rc − 1/(R + rc)) behaves liker−2

c and we are left with

2m

h̄2 (λ1− λ0)

∫ R

0
V (r)ψ0(r)

2 dr ' −ψ0(R)
2

R + rc . (33)

By combining this result with (29) and (30), we obtain

−E0max' h̄2

2m

1

(R + rc)2 (34)

together with

k0max' 1/rc. (35)

To calculate the limit ofϕ(ε) for ε = k2/k2
0max, we take ψs(k, r) the bound-state

wavefunction for the energyE = −k2h̄2/(2m). Since k is lower thank0max, ψs(k, r)
tends toψ0(r) uniformly on [0, R] [11]. For r > R, ψs(k, r) = ψs(k, R)exp(k(R − r)) '
ψ0(R) exp(k(R − r)). The moments of this wavefunction are given by∫ +∞

0
rnψs(k, r)

2 dr '
∫ R

0
rnψ0(r)

2 dr + ψ0(R)
2 n!

(2k)n+1
. (36)
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Therefore the moments are dominated by the contribution of the asymptotic part of the
wavefunction. Recalling that

ϕ = 1

3
k2

∫ +∞
0 ψs(k, r)

2(r + rc)2 dr∫ +∞
0 ψs(k, r)2 dr

(37)

we obtain

ϕ ' 2

3
k3(2(2k)−3+ 2rc(2k)

−2+ r2
c (2k)

−1) = 1

6
(1+ 2

√
εk0maxrc + 2εk2

0maxr
2
c ) (38)

which upon using (35) yields

ϕ ' 1
6(1+ 2

√
ε + 2ε). (39)

It shows that the functionϕ(ε) becomes universal asrc gets large enough. This proof is
basically derived for finite-range potentials but it is also valid for the Hulthén potential. For
ε close to zero,ϕ ' 1

6 independently ofrc.
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